Matematikos programa
Ką turi žinoti devintokas
Modeliai ir sąryšiai
Dėsningumai
Skaičių sekos. Skaičių seka apibrėžiama kaip funkcija, kurios apibrėžimo sritis yra natūraliųjų skaičių aibė NN. Paprastais atvejais mokoma(si) skaičių sekas aprašyti nn-tojo nario formule, taip pat rekurentiniu būdu. Sprendžiami įvairaus konteksto uždaviniai, kai nagrinėjami, taikomi, derinami įvairūs skaičių sekų apibūdinimo būdai.
Algebra
Kvadratinės lygtys. Apibrėžiama antrojo laipsnio (kvadratinė) lygtis su vienu nežinomuoju. Įrodoma ir taikoma kvadratinės lygties sprendinių formulė. Nagrinėjamos diskriminanto reikšmės sąsajos su kvadratinės lygties sprendinių skaičiumi. Sprendžiami įvairaus konteksto uždaviniai, sudarant kvadratines lygtis.
Raidiniai reiškiniai. Apibrėžiama kvadratinio trinario sąvoka, įrodoma jo skaidymo dauginamaisiais formulė; ji taikoma, sprendžiant uždavinius. Apibrėžiama trupmeninio racionaliojo reiškinio sąvoka, aptariama jo apibrėžimo sritis. Mokoma(si) pritaikyti žinomus sudėties ir daugybos dėsnius, veiksmų su laipsniais ir trupmenomis savybes, pertvarkant, prastinant nesudėtingus trupmeninius racionaliuosius reiškinius.
Lygčių sistemos. Mokoma(si) dviejų lygčių sistemas (su dviem nežinomaisiais), kurių viena lygtis yra pirmojo, o kita – ne aukštesnio kaip antrojo laipsnio, spręsti grafiniu ir keitimo būdais. Nagrinėjamos įvairios realaus pasaulio situacijos, kurios gali būti modeliuojamos lygčių sistemomis.
Tiesiniai ir netiesiniai sąryšiai
Funkcijos samprata. Apibrėžiamos sąvokos: funkcija, funkcijos argumentas, funkcijos reikšmė, funkcijos apibrėžimo sritis, funkcijos reikšmių sritis, funkcijos grafikas. Mokoma(si) funkciją apibūdinti žodžiais, lentele, grafiku, formule (naudojantis ir skaitmeninėmis priemonėmis), apskaičiuoti ir (ar) nustatyti funkcijos reikšmes, kai yra žinoma funkcijos argumento reikšmė, ir atvirkščiai. Aiškinama(si), kuo funkcijos grafiko eskizas skiriasi nuo grafiko. Mokoma(si) nustatyti funkcijos apibrėžimo sritį, reikšmių sritį, funkcijos grafiko susikirtimo su koordinačių ašimis taškus; intervalus, kuriuose funkcija įgyja teigiamas ir neigiamas reikšmes; yra didėjančioji, mažėjančioji ar pastovioji.
Tiesinė ir kvadratinė funkcijos. Sprendžiami uždaviniai, kai realaus gyvenimo situacijoms tyrinėti ir modeliuoti – eksperimento duomenims aprašyti – taikomos (pasitelkiamos) funkcijos. Išnagrinėjus tiesinės funkcijos modeliu aprašomus eksperimento duomenis, yra apibrėžiama tiesinė funkcija y=kx+b, tiesės krypties koeficientas k, postūmio koeficientas b. Braižant konkrečių tiesinių funkcijų grafikų eskizus (tieses), tyrinėjama, kaip tiesės padėtis priklauso nuo šių koeficientų reikšmių.
Išnagrinėjus kvadratine funkcija aprašomus eksperimento duomenis, įvedama kvadratinės funkcijos y=ax²+bx+c, kai a≠0, sąvoka, braižomi jos grafiko (parabolės) eskizai. Tyrinėjama, kaip parabolės forma ir padėtis priklauso nuo a ir D=b²−4ac reikšmių.
Naudojantis skaitmeninėmis priemonėmis, tyrinėjama, kaip, taikant transformacijas, iš funkcijos y=x grafiko gauti funkcijos y=kx+b grafiką, o iš funkcijos y=x² grafiko gauti funkcijos y=a(x−m)²+n grafiką.
Sprendžiami uždaviniai, kuriuose įvairios realaus pasaulio situacijos yra modeliuojamos funkcijomis: y=kx+b, y=ax²+bx+c, y=a(x−m)²+n, y=a(x−x₁)(x−x₂).
Geometrija ir matavimai
Figūros
Plokštumos figūros. Apibrėžiami centrinis ir įbrėžtinis kampai. Nagrinėjama centrinio ir įbrėžtinio kampo, kurie kerta tą patį lanką, savybė. Apibrėžiamos sąvokos: apskritimo liestinė, kirstinė, styga; skritulio išpjova, nuopjova. Paaiškinama, kad apskritimo lankas matuojamas ne tik ilgio matavimo vienetais, bet ir laipsniais. Aptariamos ir taikomos savybės: liestinės statmenumo spinduliui, susikertančiųjų liestinių atkarpų iki lietimosi su apskritimu taškų, susikertančiųjų stygų. Mokoma(si) remtis apibrėžimais ir įrodytais teiginiais, sprendžiant įvairius matematinio ir realaus konteksto uždavinius, įrodinėjant kitus teiginius.
Įvadas į trigonometriją. Apibrėžiami sinusas, kosinusas ir tangentas stačiajame trikampyje. Apskaičiuojant panašiųjų trikampių atitinkamų kraštinių ilgių santykius, įsitikinama, kad jų reikšmės nepriklauso nuo trikampio dydžio. Įrodomos lygybės
sin²(α)+cos²(α)=1, tg(α)=sin(α)/cos(α)
ir sudaroma kampų 30⁰, 45⁰, 60⁰ trigonometrinių reikšmių lentelė. Mokoma(si) naudotis skaičiuotuvu apskaičiuojant tikslias ir apytiksles smailiojo kampo sinuso, kosinuso, tangento reikšmes. Sprendžiami įvairūs uždaviniai, kai taikomi sinuso, kosinuso, tangento stačiajame trikampyje apibrėžimai (pavyzdžiui, nustatyti objekto aukštį, rasti kelio nuolydį ar lėktuvo pakilimo kampą, apskaičiuoti atstumą iki neprieinamos vietos ir pan.).
Duomenys ir tikimybės
Duomenys ir jų interpretavimas
Nagrinėjamos taškinės (sklaidos) diagramos, vaizduojančios statistinį ryšį tarp dviejų kintamųjų (stebimų požymių) reikšmių. Mokoma(si) iš sklaidos diagramos įvertinti šio ryšio buvimą ar nebuvimą, aptariama, kokiais atvejais kalbama apie kintamųjų koreliacinį ryšį. Detaliau aptariama tiesinė koreliacija. Mokoma(si) užrašyti sklaidos diagramoje pavaizduotos tiesės lygtį y=kx+b, interpretuoti šia lygtimi aprašomą duomenų ryšį. Aptariama, kodėl negalime daryti išvados apie tiesinės priklausomybės egzistavimą populiacijoje, jei duomenys imtyje yra neatsitiktiniai ar jų yra per mažai.
Kontaktai
Ofiso adresas
J.Kubiliaus g. 23, Vilnius
MB "Arktangentas"
Įmonės kodas 306263840
J. Kubiliaus g. 23, Vilnius, LT-09108
AB Swedbank
A/S LT837300010176565722
Sekite mūsų naujienas!